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Abshact. A new real space renormalimtion group trmsfarmation combining ideas from 
mean-fieid and finite-size scaling theories is presented. Application to the two-dimensional 
site directed percolation problem gives bener values for the percolation threshold and critical 
exponent of longitudinal correlation length than those obtained previously with other real space 
1enort"tion group approaches. When applied to (one., two- and three-dimensional) king 
models. the results are companble to the ones from previous mean-field-like renormalization 
group transformations. This method can easily be applied to other systems having second-order 
phase transitions. 

A large body of work has been devoted to the  study of approximate real space 
renormalization group transformations which can be used in  many^ different contexts. 

Several of these approaches are based on the finite-size-scaling hypothesis [I]; for 
example 'phenomenological' renormalization [2] which compares the correlation length for 
systems of different finite sizes and, more recently, 'finite-size scaling renormalization' [3] 
in which one studies quantities with zero anomalous dimension. 

Another approach is the so-called mean-field renormalization group (MFRG), originally 
proposed by Indekeu ef al [4]. It is mean-field-like in the sense that one computes the 
value of the order parameter for small clusters in the presence of a boundary field breaking 
the symmetry. Using renormalization group arguments, comparison of the order parameters 
obtained for clusters of different sizes allows a recursion relation for the couplings of the 
model to be extracted. However, consistency arguments make it necessary to consider bulk 
and surface ordering simultaneously [5]. Accordingly, three different exponents have to be 
extracted from the data obtained by comparing the results of three clusters of different size. 
Although this approach provides a simple method to find flow in the parameter space and 
to compute critical exponents, it suffers some drawbacks. The first is related to the fact that 
the scaling factor associated with the transformation is not always unambiguously defined. 
As a result, the extrapolation processes can be rather difficult. The second is that some 
spurious fixed points, without physical meaning, can show, up. 

In this paper we propose a new real space renormalization group transformation 
based uniquely on mean-field and finite-size scaling ideas and which is free of the above 
drawbacks. Although close in spirit to the MFRG, this approach does not refer to surface 
scaling and shows no ambiguity in the choice of the scaling factor. 

Let us expose the general outline of the method in the case of a phase transition described 
by a scalar order parameter PN. Let p be the control parameter and h ,  the conjugated 
external field. Let us consider a cluster formed of N sites. In zero external field, the only 
way to obtain a non-zero value for the order parameter is to add, at the boundaries of 
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the cluster, a symmetry breaking field b; thus PN = f N ( p ,  h, b) .  In the extended mean- 
field procedure proposed by Bethe-Peirls 161, the breaking field is identified with the order 
parameter itself and then PN is the solution of the implicit equation 

I Kamphorst Leal da Silva et a1 

PN = f d p ,  h,  P N ) .  (1) 

For a whole interval of p ('disordered phase'), the only solution of the above equation 
is PN = 0. The threshold value p k  is a bifurcation point from which the equation has 
more than one solution. This defines the critical coupling p;.  The use of larger clusters 
improves the value of p ; ,  but the critical exponents a*, j3*, S*, y*,  . . . keep their classical 
(mean-field) values. 

The corresponding equation of state takes its usual scaling form 

h(PN, E N )  = P;@N[EN/P/"] (2) 

where EN = p - p i ,  and ,Y and S* are the usual order parameter exponents [7]. In the 
vicinity of the critical point and to first order in h, PN can be written as a function of EN 

and h as 

(3) 

The functions a N ( p ,  p i )  and C N ( P ,  p ; )  are, in the limit p = p; ,  the so-called anomaly 
coefficients introduced by Suzuki [SI. Close to criticality, these coefficients approach some 
constant values and, accordingly, one can view PN as a function of E N  and h.  Thus, from 
equation (3) it follows that PN(EN,  h)  has the following homogeneity property: 

B' P N ( P ,  h) a N ( P ,  -!- hcru(P, PRkn". 

PN(A"S'EN, A'+"''S''h) = A P ( E N ,  h). (4) 

Using a similar argument to that used by Indekeu et al [4], we interpret the results 
obtained for two different cluster sizes N and N' in terms of a scale transformation, namely 

(5) 

where the scaling factor Ax is unknown because the order parameters have been computed 
by using an approximation. However, the problem of the determination of this factor can 

similar to the one for P N .  Accordingly, it is reasonable to assume that 

PN,(P', h') = A X P ~ ( p ,  h) 

be avoided by noticing the following fact: from (4). cN B' obeys, under rescaling, an equation 

The above relation is the key assumption of the method. This relation suggested by mean- 
field ideas is by no means exact, but should provide a very good approximation. 

Let us first consider the case of zero external field. It follows from (3), (5) and (6) that 

aN4P'. P i . )  = aw(p ,  P O .  (7) 

In terms of renormalization group transformation this equation can be interpreted as a 
recursion relation for the control parameter p 

P' = O N . N ~ ( P )  (8) 
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which defines a flow in the one-dimensional parameter space p .  Among the several possible 
fixed points, one should correspond to the critical point P ; , ~ ,  and the linearization of the 
recursion relations around this fixed point will give the anomalous dimension y,,, namely 

where p* and y,, depend on N and N'. In the presence of an external field, the associated 
anomalous dimension yh is given as usual by 

Using equations (3), (5) and (6) one finds 

We can see that, although in the present context any approximation defining the 
coefficients aN and cN is based on classical exponents p and y', non-classical exponents 
can be extracted from the linearization of the recursion relation around the fixed point. 

The larger the values of N and N' are, the better the approximation will be because 
more fluctuations will have been included in the mean-field calculation of each cluster. 
Moreover, the scaling assumption (6) will be more accurate as the scaling ratio N / N '  
approaches 1. Accordingly, one anticipates that the best values of the critical parameter p 
and the best value of the anomalous dimension y, will be obtained in the limit N + co 
and p = N,"' + 1. In this limit we expect the extraction of the fixed point to be a 
stable operation and that the sequence of PI;," will converge to the exact value when the 
corresponding sequence of mean-field estimates p b  also converges (rather more slowly) to 
the exact value. Therefore, the clusters must be chosen in such a way that, by increasing 
their size, the mean-field critical parameters approach the true value. 

As a first example, we shall study the problem of directed percolation. We restrict 
ourselves here to the two-dimensional site directed problem. Let us briefly remind ourselves 
of the model. The sites of a two-dimensional square lattice are occupied with independent 
probability p .  Sites are related among themselves by directed bonds pointing towards a 
particular direction z (the vertical one in figure I). As p increases, the cluster formed by 
the site orientationally connected to the origin becomes larger and larger. At the threshold 
value pc ,  an infinite cluster spanning the whole system is formed. The order parameter is 
the probability P ( p )  that the site at the origin is a source of an infinite cluster [9] and that 
p is the control parameter. The external field coupling to the order parameter corresponds 
to the probability that a site is coupled by a bond to  an external 'ghost site' [lo]. One 
characteristic feature of this problem is the presence of two different correlation lengths, 
parallel and perpendicular to the z direction. Accordingly, two different exponents V I I  and 
v~ have to be introduced. This anisotropy makes it difficult to devise a consistent real space 
renormalization group transformation [I 1,121. However, the directed percolation problem 
is particularly well suited to test the method because it is possible to study large clusters. 

The mean-field part of the calculation follows the work of De'Bell [Ill. The two 
smallest clusters ( N  = 1 and N = 3) are depicted in figure 1. Note that the empty 
sites-here called mean-field sites-are adjacent to the clusters. The effective field b is 

~ ~ 
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Figure 1. The asymmevic mean-field clusters with (a) N = I and (b)  N = 3 sites. Empty 
circles represent the mean-field sites. The dashed lines are the bonds connecting the sites of the 
cluster to the ghost site (represented by a square). 

the probability that a mean-field site will be connected to the infinite cluster. Let us now 
consider explicitly the evaluation of P N ( p ,  h,  b )  for the cluster with N = 1 (see figure l(a)). 
The bond connecting the origin to the ghost site is present with.probability h. When this 
happens, one has a percolating configuration which is independent of the sites and mean- 
field sites. Then all configurations with the origin connected to the ghost site contribute to a 
term h in P I @ ,  h, b). When this bond-is absent (with probability 1 - h),  we must consider 
configurations with at least one mean-field site connected to the percolation cluster. These 
configurations give us a term (1 -h)[pb2+2pb(l  -b)}  in the percolation probability. Near 
criticality we have 

PI = h ( l  -2pb)+p(-b2+2b) (12) 

up to terms of order of hb and bZ. The mean-field approximation is obtained by setting 
b = PI. For p greater than but near the percolation threshold we obtain 

P I ( P . ~ )  = ~ I ( P ,  P ; ~ I  + ( ~ I E I ) c I ( P ,  P C )  (13) 

with cl = p - p; ,  pC = 1/2, a l ( p ,  p;)  = 2 / p  and c l (p ,  pf) = 1/2. As expected, the 
critical exponents take their classical values 6' = 1 and y* = 1. A similar calculation can 
be done for the cluster with N = 3 sites (see figure l(b)) and one gets 

S(P,  h)  = a d p ,  ~ 3 ~ 3  + ( h / d c d p .  P;) (14) 

where p i  = 0.5374. The recursion relation for p is obtained from equation (7), namely 

The critical fixed point of this equation is p* = 0.7031, in good agreement with the best 
estimations (0.7055 [I31 or 0.7065 [14]). The critical exponent UII  = l/y, obtained from 
equation (9) describes the divergence of 811 [U]. For the two smallest clusters we find 



A new meanzfield-like renormalization group transformation 1499 

y ,  = 1.149. This value is very far from the expected one (y ,  = 0.58 1131). Moreover, the 
exponent yh evaluated from equation (10) is yh = 1.171. 

A computer code has been written to compute exactly PN(P,  h)  for arbitrary N. Data 
have been obtained for cluster size up to 105 sites. For each value of N, the mean-field 
critical threshold, the coupling at the critical fixed point and the exponents are computed. 
The results are quoted in table 1. Note that for all values of N ,  the corresponding values 
of p at the fixed points are close to the best known value. Finite-size scaling theory 
suggests extrapolating the data according to - a. A rather good least-square fit of 
In(p, - p * )  x y,, In i s  obtained for all reasonable values of y p  with N‘ fixed. The 
second row of table 2 shows the variation of the central estimate of pc with the number of 
data points (M) considered in the case N‘ = 3 and N = 6 . .  ,105. We used the value of y,, 
given by our approach (l/y,, = 1.68). This leads to the extrapolated value, pc = 0.70621 1 
(the error being in the last digit). Our estimate is slightly different from the best series 
estimate [13] and closer to the value of the recent evaluation by ben-Avra.ham [14]. It is 
worth mentioning that the mean-field values of the critical threshold (not shown here) also 
approach the expected value but with a slower convergence. The extrapolation procedure 
for the exponent y ,  follows a similar line to the one used in [I21 and [16]. More explicitly, 
one considers the scaling factor in the limit + 1. Then the sequence of estimates 
for yp can be extrapolated by using the relation y ,  = y p  + SK, where 6 = m- 1, 
K is a positive constant and yp”’ is the true (or extrapolated) value of y,,. The intercept of 
y,, x S in the asymptotic regime gives y,”’. A similar analysis can be done for the exponent 
yh. These different estimations are shown in the two last rows of table 2. It follows that 
the best extrapolations are, respectively, y ,  = 0.595 z t  6 and yh = 1.326 & 6. The value of 
y,, is in good agreement with the best expected one (y, = 0.58 [13]). 

Table 1. The critical p m e t e n  for clusters with N and N‘ sites; p‘ is the fixed point, yp and 
Yk are the critical exponents. 

N N‘ p* Y P  Yk 
3 I 0.70308 1.1489 1.1706 
6 3 0.69301 0.9214 1.2098 

10 6 0.69752 0.8390 1.2283 
15 IO 0.69951 0.7923 1.2418 
21 15 0.70077 0.7607 1.2520 
28 21 0.70166 0.73.77 1.2602 
36 28 0.70233 0.7200 1.2671 
45 36 0.70285 0.7060 1.2729 
55 45 0.70326 0.6946 1.2781 
66 55 0.70360 0.6850. 1.2827 
78 66 0.70388 0.6769 1.2868 
91 78 0.70411 0.6698 1.2905 

105 91 0.70431 0.6637 1.2940 

j,. 

Note that this is the first real space renormalization group transformation which produces 
a good value of y,,. On the other hand, the difficulties encountered in previous real 
space renormalization group transformations concerning the determination of the transverse 
correlation length exponent [ I l ,  12,151 are also present in this approach. 

As a second example, we shall consider the nearest-neighbours ferromagnetic Ising 
model. The order parameter, control parameter and external field are, respectively, the spin 
magnetization, reduced coupling constant K and the external reduced magnetic field h. 
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Table 2. Estimates of the critical pmmeten for clusters up to 105 sites. The cenval estimate 
with the number M of considered points in the fit is shown. The critical threshold pc was 
obtained in the iimir -+ m wiIh the cluster of N' = 3 fixed. The estimates of the 
CritiWl exponents y, and yh were Obtained in the limit -4 1. 

M P d W  Y p ( W  Y d M )  
12 0.70635 0.614 1.305 
11 0.70616 0.608 1.312 
I O  0.70611 0.603 1.316 
9 0.70611 0.599 1.320 
8 0.70611 0.597 1,324 
7 0.70612 0,595 1.326 
6 0.70613 0.593 1.329 
5 0.70614 0.591 1.331 
4 0.70615 0.589 1.333 

series expansions [I31 0.70549 0.577 
transfer-matrix [I41 0.70652 

A first test of the validity of the method consists in studying the onedimensional case. 
We shall not give here the details of this simple calculation. The main features are the 
following: first, for all cluster sizes, one finds only two fixed points, K = 0 and K = CO, 
with the expected flow and at which the anomalous dimension yh takes its exact value. 
Moreover, the anomalous dimension y,, converges towards its exact value when N -+ CO 

and NIN' -+ 1. 
The two- and three-dimensional cases are more interesting. The considered clusters 

have, respectively, square and cubic shapes and for computational reasons the maximum 
number of spins in a cluster is 27. 

For zero external field, and near criticality, the equation of state for the magnetization 
mN of a N spins cluster reads: 

(18) m~ = f (K)m,v  + g , v ( K ) m f ,  f o(mL). 
Hence 

The mean-field critical coupling K; is the solution of 1 - f , ( K k )  = 0. Thus one has 

Now, 

EN = (K - K ; ) / K .  

For non-zero field, the coefficients C N ( K ,  K;) are , aine _ I  computing near 
susceptibility. 

The results obtained for the critical coupling Kc and the anomalous dimensions yK and 
y,, are given in tables 3 and 4 for several cluster sizes N and N'. The extrapolation has 
been made following the usual finite-size scaling prescriptions. 

For the two-dimensional case, the critical coupling constant, the thermal anomalous 
dimension Y K  and the field anomalous dimension yh differ from their exact values by 3, 
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Table 3. Two-dimensional king model. The critical parameters for clusten with N and N' 
sites: K* is the fixed point and y ,  and yh are the critical exponents. 

N N' K* YC Yh 
4 1 0.39938 ~ ~ 0.7527 1.0545 
9 1 0.40622 0.7808 1.1116 
16 I 0.41078 0.7972 1.1490 
25 I 0.41408 0.8094 1.1762 

Extrapolation 0.427 
4 1 0.39938 0.7527 1.0545 
9 4 0.41330 0.8289 1.2127 
16 9 0.42029 0.8662 1.2987 
25 16 0.42441 0.8858 1.3551 

Extrapolation 0.94 1.50 
Exact results 0.441 1.0 1.875 

Table 4. Same as table 3 for the three-dimensional king model 

N N' K* Y,  Yh 

8 1 0.21864 0.9647 1.0686 
27 I 0.21919 1.0148 1.1418 
27 8 0.21967 1.0996 1.2694 

Series exmnsions 0.222 1.59 ~ ~ 2.48 

6, and 20% respectively. The results obtained for the critical coupling and the thermal 
anomalous dimension are comparable to the values obtained by Indekeu eta1 [5] with three 
cluster fits. Our estimation of the field anomalous dimension yh is, however, poorer. 

For the three-dimensional case, the critical coupling constant, the thermal anomalous 
dimension y~ and the field anomalous dimension yh differ from their exact values by 1.2, 
30, and 50% respectively. Although the value of the critical coupling is quite good, the 
anomalous dimensions are poor. This is not surprising in view of the very small number of 
clusters considered. 

In conclusion, we see that this new mean-field-like renormalization group transformation 
leads to a coherent description in two different situations: directed percolation and the king 
model. This new approach is particularly well suited to the problems in which large clusters 
can be treated in mean-field approximation. This is the case of directed percolation for 
which the results obtained are better than the ones obtained previously by other real space 
renormalization group transformations. For the Ising case, where large clusters cannot be 
analysed in a reasonable computing time, the results are comparable to the ones obtained by 
other related approaches. This renormalization procedure has the advantage of being simple 
and provides a systematic extrapolation scheme. It could be applied to many different 
problems exhibiting second-order phase transitions. However, one has to keep in mind 
that this renormalization group transformation, like all the other real space renormalization 
group transformations, contains  some^ uncontrolled approximations. 
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